
International Journal of Engineering, Science and Mathematics 
Vol. 6Issue 5, September  2017,  
ISSN: 2320-0294 Impact Factor: 6.765 
Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com          Double-Blind 

Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's 
Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A  

  

174 International Journal of Engineering, Science and Mathematics 
http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

STUDY ON SOFTWARE DESIGN ISSUES 

Vijay Kumar Sharma 

 
Abstract 

Adherence to a defined process or standards is necessary to achieve satisfactory software quality. 
However, in order to judge whether practices are effective at achieving the required integrity of a 
software product, a measurement-based approach to the correctness of the software development is 
required. A defined and measurable process is a requirement for producing safe software 
productively. In this study the contribution of quality assurance to the software development process, 
and in particular the contribution that software inspections make to produce satisfactory software 
products, is addressed. 
 
To be more effective detecting software defects, not only should defect detection techniques be 
studied and compared but also the entire software detection process should be studied to give us a 
better idea of how it can be conducted, controlled, evaluated and improved. 
 
This study addresses the requirement for an independently repeatable, scalable and substantially 
automated method for yielding semantics from computer code in a complete, unambiguous and 
consistent manner in order to facilitate, and make repeatable, verification based code inspection. 
Algorithmic and heuristic techniques for investigating loop progress and termination are also 
introduced. Some of these techniques have been automated in supporting tools, and hence, the 
resulting defects can be repeatable identified. Throughout this study a strong highlighting is placed on 
describing implementable algorithms to realise the derivation techniques discussed. A number of 
these algorithms are implemented in a tool to support the application of the verification methods 
presented. 
The techniques and tools presented in this study are well suited, but not limited to, supporting 
rigorous methods of defect detection as well as formal and semi-formal reasoning of correctness. The 
automation of these techniques in tools to support practical, formal code reading and correctness 
argument will assist in addressing the needs of trusted component technologies and the general 
requirement for quality in software. 
The main part of this study is a systematic reconstruction of the B-method, using Generalized 
Substitution Language (GSL) and finishing with the Abstract Machine Notation (AMN).  
Introduction to Software Fault Detection 
Software fault detection is an central part of software development. The quality, the schedule, and the 
cost of a software product based heavily on the software fault detection process. In the development 
of software systems, 40% or more of the project time is spent on fault detection activities, such as, 
inspection, testing, and maintenance. In this thesis, maintenance means the fault detection activities 
after software releases, which include trouble shooting and debugging. 
Software fault detection has proposed new inspection and testing techniques, and has studied and 
compared different inspection and testing techniques. However, most of the research has focused on 
a single inspection or testing technique. At most, different inspection or testing techniques were 
compared to determine which one detected more faults. To be more efficient in this area, not only the 
study of a fault detection technique itself is necessary, but also more importance should be put on the 
fault detection process in which these techniques are applied. How can we get more from the fault 
detection process by a significant selection and combination of the available fault detection 



 ISSN: 2320-0294 Impact Factor: 6.765  

175 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

techniques? How can we calculate and improve the software’s fault detection process? Largely, these 
questions are still open. Since there is no general advice on how to conduct the software fault 
detection process? 

The initial aim of this work was to review software quality assurance within the development 
process and more specifically the area of software inspections, with a view to establishing areas of 
strengths and weakness and to identify areas of work, which would benefit from further research. A 
review of current study shows that software inspections have been successful in identifying errors 
within software products close to the point of their introduction, and therefore improving software 
productivity. However, software inspections are still very variable in application and effectiveness, 
depending greatly on the ability and experience of the individual inspector.  

 
In proper verification and inspections, to find functional faults, the behavioural stipulation 

exhibited by a software artefact must be extracted from that artefact and compared to its intended 
stipulation. In this study, we present techniques for deriving semantic assertions from a software 
artefact. These semantics represent the abstracted behavioural stipulation required to support proper 
verification and  inspection activities on that artefact. The repeatable techniques presented form a 
basis for reasoning about functional correctness and for assisting in the detection of functional faults. 

The deduced semantics serve different purposes depending on the formality of the stipulation 
given. Although the semantic derivation techniques are manually applied to examples throughout this 
study, we place an emphasis on the definition of algorithms for extracting semantics that are 
agreeable to automation. 
    Hypothesis and Contribution 

1. Generally, Current techniques of verification and fault detection are not repeatable. 
2. All algorithms for the derivation of trusted semantic representations from program code 

exist and can be built-up. 
3. The derivation of semantic information, including constants, from program code can 

support and improve the repeatability of verification and inspection tasks. 
In this study addresses the issue of repeatability and practicality in verification and software 

inspection activities by proposing a proper and repeatable method of paraphrasing code into its 
semantics, and by defining techniques for using the extracted semantics in support of these activities. 

Generally, the use of proper techniques, however insignificant, does have a positive effect on 
the reliability of the software in question, if other software engineering practices are not abandoned. 
Proper techniques research has also helped main stream software engineering to effect many changes 
for the better. 

 
We are summarizing few definitions: 
Software Product 
A software product is any artefact created as part of creating and maintaining software, 

including computer programs, plans, procedures, and associated documentation and data. 
Software Process 
A software process is a set of activities, techniques, practices, and transformations that people 

use to develop and maintain software product. 
Software Faults 
A software fault is any flaw or imperfection in a software product, including both code and 

documentation. 
Maintenance 
Software maintenance is the activity required to keep the software system functioning 

properly or to add enhancements after software release. 
 
 
 



 ISSN: 2320-0294 Impact Factor: 6.765  

176 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

Software Fault Detection 
 
Software fault detection is the process of discovering software faults. It includes these 

activities:     inspection, testing, and maintenance. 
 
 Software Development Processes 

a)  What is a process? 
A software development process is a discipline by which control can be imposed on the design 

and development of a software product. A process defined as a set of partially ordered steps intended 
to reach a goal, this definition leads to an assumption that a process is a sequence of steps, with the 
components being called the process elements. A process step is defined as an atomic action of a 
process that has no externally visible substructure. 

ISO12207 [International Organization for Standardization and International Electro technical 
Commission] defines a process as a set of interrelated activities, which transform inputs into outputs. 
It also notes that the term “activities” in this definition also covers the use of resources. The ISO 
definition appears to be wider in that it implies that processes can contain concurrent elements.  

To control the development of software, states a process may contain the following elements: 
• Prescriptive, requiring that the process should be performed in a particular way 
 
• Proscriptive, which requires that a process should not be performed in a particular way 
 
• Descriptive in that it describes the way in which development is actually conducted. 
 
b) Who uses the process? 
There are a number of motivations for controlling the process. 
 
The project manager wishes to have improved estimates of costs and time-scales to prepare 

bids, to have a structure by which he/she can plan to make most efficient use of resources and 
subsequently monitor the process. 

 
The software developer is looking for appropriate tools, techniques and environment to 

support the current activity and may need guidance on the activity and the context of that activity, 
together with other developers. 

 
The customer (often represented by the quality assurance activity) needs to know that the 

project's development is meeting functional, as well as cost and time-scale requirements. 
Considering all these different perspectives, we can see that there are many constraints and 

interactions associated with a process. 
Software errors 
The wear-out mechanisms that occur with hardware cannot occur in software, therefore all 

software errors are systematic errors. An important mechanism for this type of error introduction is 
human error, which results both from our nature as individuals and in the way in which engineers act 
and communicate in groups.  

Software errors can also be introduced during any of the subsequent stages of development. 
Software errors, when detected, lead to re-work especially when detection occurs later in the process, 
i.e. testing. Then the re-work of the previous development stages is often at considerable expense and 
consequent re-testing.  

A software error will only be manifested as a failure of the system when a particular input 
sequence, exercising the portion of the software code containing the fault, is presented to the system. 
This set of inputs may never occur during the operation of the software and the fault remains latent 
for the life of the system. Therefore, it is not possible to consider software in conventional reliability 



 ISSN: 2320-0294 Impact Factor: 6.765  

177 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

terms, and this is confirmed by considering the profile of software integrity against time. They 
estimated the number of errors in a project would be: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔
= 𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟𝑠 −  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑟𝑒𝑣𝑖𝑒𝑤𝑠 𝑎𝑛𝑑 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
−  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 

 
The problem with this equation is that if we wish to know the number of errors remaining then 

we also need to know the total number of errors. They assume that the total number of errors in a 
project will be the same as that of other similar projects.  

It should also be noted that the absence of errors found during quality and testing processes 
does not indicate that the product is free of error. 

 
Software Quality Assurance Processes 
Our concepts of integrity and reliability of a product result from the assurance of the quality of 

the product to a standard. Quality has been described as “The totality of features and characteristics of 
a product or service that bears on its ability to satisfy given needs”. Similarly, Grady describes quality 
as “Fitness for use, satisfying customer needs, and absence of faults”. ISO9001 [International 
Organization for Standardization] provides a model for such a quality assurance standard, ISO9000-3 
[International Organization for Standardization] and the Tick IT guide provide guidance for the 
application of the standard to software. 

Alternative methods to the ISO standard are concerned with continuous improvement or 
capability measurement, i.e. as in the SEI Capability Maturity Model. This model grades the maturity of 
an organization’s software development process into five levels:  

Level 1: Initial - At this level the organization is ad hoc and often chaotic with few formalized 
procedures existing, and where they do exist, there is no management mechanism to ensure that they 
are used. Indeed, management may not understand problems and issues for a given project, such as 
lax change control, software installation and maintenance problems, or the need to integrate software 
tools. 

 
Level 2: Repeatable - At this level a new manager has no orderly basis for understanding the 

organization’s development projects. New team members have to ‘learn the ropes’ informally from 
other team members by observation of actual practice and so on. 

 
Level 3: Defined - At this level measurement is focused on specific tasks to indicate the 

effectiveness of project organization. 
 
Level 4: Managed - At this level, the cost of gathering data becomes onerous. 
 
Level 5: Optimized  
 
These reviews and inspections are part of a quality assurance process used for all types of 

engineering. However, their application to software requires particular care due to the abstract and 
non-tangible nature of the products and the inevitable complexity of software. Three techniques have 
been described for software quality assurance processes: Walkthrough, Review and Inspection. 

Walkthroughs 
A review process in which a designer or programmer leads one or more members of the 

development team through a segment of design of code, that he/she has written, while the other 
member ask questions and make comments about techniques, style, possible errors, violation of 
design standards and other problems. 

Reviews 
1. A proper meeting at which the initial or detailed design of a system is presented to the user 

or any other interested parties for comment and approval. 



 ISSN: 2320-0294 Impact Factor: 6.765  

178 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

 
2.  The proper review of an existing or proposed design for the purpose of detection and 

solution of design deficiencies that could affect fitness for use and environmental aspects of the 
product, process or service, and/or for identification of potential improvements of performance, safety 
and economic aspects.  

 
Software inspections 
 
“A proper evaluation technique in which software requirements, design or code are examined 

in detail by a person or group of experts other than the author detecting faults, violations of 
development standards and other problems.” 

 
The standard for software inspections was described in Fagan’s classic paper, which, although 

rather dated now, still provides the basis of much software inspection practice. He describes the need 
for improving techniques for ensuring quality in the production of software. He also states that 
inspections are proper, efficient and economical techniques of finding errors. His work follows the 
principals of statistical process control described by Damming to make improvements in the quality of 
the software produced. Software inspections are a technique where the software is examined in a 
proper process with a clearly defined series of operations to identify errors with the software.  

 
Errors are properly identified during the fault-logging meeting, however these may have been 

found during the preparation stage. The solutions to the errors should not be discussed at the logging 
meeting. Errors are classified as missing, wrong or extra, with a consequence of major or minor, for 
example, a miss-spelt word could be classified as a minor, wrong error. Fagan describes how data from 
the inspection process can be used to determine the effectiveness of the reviewing process in finding 
errors, and to determine norms against which particular problems can be identified. In particular, he 
identified that the correct inspection rate was important so as not to skip detail, and not to lose 
productivity.  

In defining error detection efficiency, he uses the formula 

   Efficiency =
Errors  found  by  an  inspection

Total  errors  in  the  product  before  inspection
 

 
Here an important definition that a fault is an instance in which a requirement is not satisfied, 

linking the criteria for the successful conclusion of an inspection to meeting the requirements. He 
introduces the concept of feedback, where the author of the inspected item can ask questions of the 
inspectors. 

Mixed teams of inspectors were used including representatives from systems, software, and 
test and product assurance. Only 16% of the inspection time was spent on the code, the remainder on 
inspecting the other parts of the development process. The fault density data from 203 inspections 
during three years experience at JPL is given below. Kelly noted that fault densities decreased 
exponentially as a result of correcting faults during the initial stages of a project and later development 
stages. 

 

Defect Density Major Minor 

Requirements(R1) 6.5 23.4 

Architectural Design(I0) 2.5 16.4 

Detailed Design(I1) 3.5 10.6 

Source Code(I2) 1.1 11.5 

Test plan 10.3 11.8 

Test Procedures 6.4 13.0 

 
Table:  Software Fault density at NASA JPL 



 ISSN: 2320-0294 Impact Factor: 6.765  

179 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 
 

 
Kelly used curve-fitting techniques to develop an exponential model of faults per page as the 

project moves through its development stages:  
y= 3.19 e-0.61x 

Where x is defined by the inspection stage as: 
 

X 1 2 3 4 

Stage R1 I0 I1 I2 

 
Kelly did not address how applicable his model was to other organisations, so without further 

experimental evidence, his work is of little practical value. Weller has published inspection experience 
from Bull Information Systems in which he concentrates on the measurement of inspections, and 
notes that inspections instrument the software development process. A major problem he notes is 
disinclination of project managers to accept that engineers do any activity other than coding. This 
view, despite much evidence to the contrary, is persisting, as discovered recently by Hall and Wilson 
where quality was seen as “running interference to the development of the product". 

 
REFERENCES 
[1] A Discipline of Programming, E. W. Dijkstra, Prentice Hall, 1976. 
[2] Software Development with Z, J. B.Wordsworth, Addison-Wesley, 1992. 
[3] Software inspection: An effective verification process, A. Ackerman, L. Buchwald, and F.    
       Leniski, IEEE Software, 6(3):31–36, May 1989. 
 
[4] Design and code inspections to reduce errors in program development, M. Fagan, IBM    
      Systems Journal, 15(3):182–211, 1976.  
 
[5] Advances in software inspection, M. Fagan, IEEE Transactions on Software Engineering,  
        12(7), Jul 1986. 
 
[6] Software Inspection, T. Gilb and D. Graham, Addison-Wesley, 1993.  
 
 


